Matrices with Maximum Upper Multiexponents in the Class of Primitive, Nearly Reducible Matrices
نویسنده
چکیده
B. Liu has recently obtained the maximum value for the kth upper multiexponents of primitive, nearly reducible matrices of order n with 1 ≤ k ≤ n. In this paper primitive, nearly reducible matrices whose kth upper multiexponents attain the maximum value are completely characterized.
منابع مشابه
Power Indices of Trace Zero Symmetric Boolean Matrices
The power index of a square Boolean matrix A is the least integer d such that A is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n × n primitive symmetric Boolean matrices of trace zero, the class of n × n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zer...
متن کاملMatrix inversion and digraphs: the one factor case
The novel concept of a cyclic sequence of a digraph that has precisely one factor is defined, and is used to characterize the entries of the inverse of a matrix with such a digraph. This leads to a characterization of a strongly sign-nonsingular matrix in terms of cyclic sequences. Nonsingular nearly reducible matrices are a well-known class of matrices having precisely one nonzero diagonal, an...
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001